首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   50篇
  国内免费   8篇
测绘学   10篇
大气科学   1篇
地球物理   163篇
地质学   9篇
海洋学   5篇
天文学   5篇
自然地理   4篇
  2022年   2篇
  2021年   4篇
  2020年   8篇
  2019年   7篇
  2018年   7篇
  2017年   11篇
  2016年   12篇
  2015年   10篇
  2014年   9篇
  2013年   17篇
  2012年   9篇
  2011年   11篇
  2010年   4篇
  2009年   11篇
  2008年   9篇
  2007年   12篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   10篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1995年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
1.
The question of positioning the optical counterparts of the ICRF quasars is outlined in the perspective of future space astrometry missions, which ultimately will bring a new realization of the ICRS in the optical range. Ground-based interferometry with a dual-field observing mode (PRIMA/VLTI),together with the missions DIVA and FAME, will have a key role in building an extragalactic reference frame in the optical/near-IR range with about the same accuracy as that of the present (VLBI) primary frame. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
The response of low‐ductility reinforced concrete (RC) frames, designed typically for a non‐seismic region, subjected to two frequencies of base excitations is studied. Five half‐scaled, two‐bay, two‐storey, RC frames, each approximately 5 m wide by 3.3 m high, were subjected to both horizontal and/or vertical base excitations with a frequency of 40 Hz as well as a lower frequency of about 4 Hz (close to the fundamental frequency) using a shake table. The imposed acceleration amplitude ranged from 0.2 to 1.2g. The test results showed that the response characteristics of the structures differed under high‐ and low‐frequency excitations. The frames were able to sustain high‐frequency excitations without damage but were inadequate for low‐frequency excitations, even though the frames exhibited some ductility. Linear‐elastic time‐history analysis can predict reasonably well the structural response under high‐frequency excitations. As the frames were not designed for seismic loads, the reinforcement detailing may not have been adequate, based on the crack pattern observed. The effect of vertical excitation can cause significant additional forces in the columns and moment reversals in the beams. The ‘strong‐column, weak‐beam’ approach for lateral load RC frame design is supported by experimental observations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
3.
A maximum allowable period criterion is used to determine reasonable stiffness requirements for reinforced concrete frames with the seismicity associated with central and eastern U.S. A general relationship is developed to describe the displacement demand expected for central and eastern U.S. based on a survey of available ground motions, opinions of seismologists, and code‐based provisions. A series of hypothetical reinforced concrete frames is proportioned using a maximum allowable period criterion and evaluated for expected maximum displacement response using non‐linear dynamic analyses and a suite of ground motions. Results indicate that for the reinforced concrete structural systems considered in the study, proportioning for gravity loads will provide sufficient stiffness in central and eastern U.S. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
4.
Most current methods of design for concrete structures under earthquake loads rely on highly idealized ‘equivalent’ static representations of the seismic loads and linear‐elastic methods of structural analysis. With the continuing development of non‐linear methods of dynamic analysis for the overload behaviour and collapse of complete concrete structures, a more direct and more accurate design procedure becomes possible which considers conditions at system collapse. This paper describes an evaluation procedure that uses non‐linear dynamic collapse–load analysis together with global safety coefficients. A back‐calibration procedure for evaluating the global safety coefficients is also described. The aim of this paper is to open up discussion of alternative methods of design with improved accuracy which are necessary to move towards a direct collapse–load method of design. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
5.
A new earthquake resistant structural system for multi‐storey frame structures, based on a dual function of its bracing components, is developed. This consists of a hysteretic damper device and a cross‐bracing mechanism with a kinetic closed circuit, working only in tension, so that cable members can be used for this purpose. Solutions are presented regarding the connections' design of three types of structural frame system, that are concerned throughout the study: braced moment free frame, braced moment resisting frame with moment free supports, and with moment resisting supports. The dynamic behaviour of the system is investigated on the basis of an SDOF model, and based on the response spectra method an approximate design approach of the controlled structures is shown. From the time history analysis of the structural systems for the El Centro earthquake the areas of appropriate stiffness relations of the frames to the hysteretic dampers and the cable braces are deduced, so that the energy dissipation of the system may be controlled by the damper‐cable bracing mechanism. Based on the results of these studies, a predesign approach is developed for the implementation of the control system in frame structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
6.
The use of energy dissipation systems for the seismic control of steel structures represents a valid alternative to conventional seismic design methods. The seismic devices currently employed are mostly based on the metallic yielding technology due to the large feasibility and efficiency they can provide. Within this context, in the current paper an innovative solution based on the adoption of low‐yield‐strength pure aluminium shear panels (SPs) for seismic protection of steel moment‐resisting frames is proposed and investigated. In order to prove the effectiveness of the system, a wide numerical study based on both static and dynamic non‐linear analyses has been carried out, considering a number of different frame‐to‐shear panel combinations, aiming at assessing the effect of the main influential parameters on the seismic response of the structure. The obtained results show that the contribution provided by aluminium SPs is rather significant, allowing a remarkable improvement of the seismic performance of the structure in terms of stiffness, strength and ductility, with the possibility to strongly limit the damage occurring in the members of moment‐resisting frames. In particular, it is clearly emphasized that the stiffening effect provided by SPs allows a more rational design procedure to be adopted, since the serviceability limit state check does not lead to unavoidable and uneconomical increase of the size of main structural members. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
7.
Two procedures are developed and implemented in a hybrid simulation system (HSS) with the aim of enhancing the accuracy and reliability of the online, i.e. pseudo‐dynamic, test results. The first procedure aims at correcting the experimental systematic error in executing the displacement command signal. The error is calculated as the difference between command and feedback signals and correlated to the actuator velocity using the least‐squares method. A feed‐forward error compensation scheme is devised leading to a more accurate execution of the test. The second procedure employs mixed variables with mode switching between displacement and force controls. The newly derived force control algorithm is evaluated using a parametric study to assess its stability and accuracy. The implementation of the mixed variables procedure is designed to adopt force control for high stiffness states of the structural response and displacement control otherwise, where the resolution of the involved instruments may favour this type of mixed control. A simple pseudo‐dynamic experiment of steel cantilever members is used to validate the HSS. Moreover, two experiments as application examples for the two developed procedures are presented. The two experiments focus on the seismic response of (a) timber shear walls and (b) reinforced concrete frames with and without unreinforced masonry infill wall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
8.
A statistical analysis of the peak acceleration demands for nonstructural components (NSCs) supported on a variety of stiff and flexible inelastic regular moment‐resisting frame structures with periods from 0.3 to 3.0 s exposed to 40 far‐field ground motions is presented. Peak component acceleration (PCA) demands were quantified based on the floor response spectrum (FRS) method without considering dynamic interaction effects. This study evaluated the main factors that influence the amplification or decrease of FRS values caused by inelasticity in the primary structure in three distinct spectral regions namely long‐period, fundamental‐period, and short‐period region. The amplification or decrease of peak elastic acceleration demands depends on the location of the NSC in the supporting structure, periods of the component and building, damping ratio of the component, and level of inelasticity of the supporting structure. While FRS values at the initial modal periods of the supporting structure are reduced due to inelastic action in the primary structure, the region between the modal periods experiences an increase in PCA demands. A parameter denoted as acceleration response modification factor (Racc) was proposed to quantify this reduction/increase in PCA demands. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
9.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
10.
The preproposal stage of the rulemaking process is notoriously understudied, but enormously important in determining regulatory outputs. Recently, Rinfret (2011c Rinfret , S. R. 2011c . Frames of influence: U.S. environmental rulemaking case studies . Rev. Policy Res. 28 ( 3 ): 231245 .[Crossref], [Web of Science ®] [Google Scholar]) analyzed the U.S. Fish and Wildlife Service (USFWS) rulemaking process and developed a frame analysis model to interpret stakeholder influence during the preproposal stage. Rinfret argues that stakeholders use three frames to influence agency rulemaking, including an expertise, a fiscal feasibility, and an information frame. This article tests this model to determine whether it is applicable to other federal agencies such as the National Park Service (NPS). Through an analysis of stakeholder framing within the 2012 NPS Yellowstone Winter Use Rule, this research confirms that Rinfret's model is indeed applicable to the NPS process. Therefore, this research suggests that this theoretical model examining stakeholder influence is applicable to other public land agencies, and arguably can be applied across the bureaucracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号